Offices Nationwide 

Sound Absorption

The loss of sound energy when sound waves come into contact with an absorbent material such as ceilings, walls, floors and other objects.

Noise Disturbance

Building acoustics can help to mitigate the effects of noise disturbance which can have negative effects on health, well-being and general quality of life.

The Noise Policy Statement for England (NPSE) defines noise pollution as:

- Environmental noise: which includes noise from transportation sources. - Neighbour noise: which includes noise from inside and outside buildings. - Neighbourhood noise: which includes noise arising from industrial and entertainment premises, trade and businesses, construction sites and noise in the street.

This can be an important consideration for the location, design and construction of new developments.

Sound Intensity

Sound intensity is measured in Decibels (dB). This is a logarithmic scale in which an increase of 10 dB gives an apparent doubling of loudness.

Sound pitch is measured in Hertz (Hz), the standard unit for the measurement for frequency. The audible range of sound for humans is typically from 20 Hz to 20,000 Hz, although, through ageing and exposure to loud sounds the upper limit will generally decrease.

Sound Transmissions

Sound transmission paths can be interrupted by sound insulation and by blocking air paths. The sound insulation of a single leaf of a material is governed by its mass, stiffening and damping.

The sound insulation across a good conventional, lightweight, office to office construction is typically in the order of 45 dB Dw. This means that if the sound level in the source room is around 65 dB, (a typical level for speech) the sound level in the adjacent room, the receiver room, will be approximately 20 dB (barely audible). If sound levels are increased in the source room however, to 75 dB (raised voice), sound levels within the adjacent room will also increase to around 30 dB (audible). Sound insulation therefore describes the level of sound lost across a partition and not the level of sound within an adjacent room.

Dw represents the sound insulation between rooms on-site. Rw represents the lab tested sound insulation of an element making up a partition wall/floor type. Standards achieved in labs may not be possible on site because of the quality of workmanship and due to sound ‘flanking’ acoustic elements, that is, travelling around them through an easier path, rather than only directly through them as under lab conditions.

The building regulations part E sets minimum standards for design and construction in relation to the resistance to the passage of sound.

E2 Specialist Consultants
August 13 at 1:29pm
Today takes 2 of our engineers, air testing this enormous modular classroom in Tring, It took 4 fans to test this space and unfortunately resulted in a Fail. Remedial sealing will be required to areas that we have identified as leaking cold air infiltration. #preperationiskey

E2 Consultants Delivering compliance solutions for Architects & Developers    Head Office E2 HOUSE, South Park Way, Wakefield 41 Business Park, WF2 0XJ    Questions? Call: 0800 043 8100

27 28 25 29